2415

An Integrated Approach on Immune-Cell Subtype Characterization Reveals Common Inflammatory Pathways in Nonalcoholic Steatohepatitis and Primary Sclerosing Cholangitis

Milessa Silva Afonso,¹ Abhishek Aggarwal,¹ David Lopez,¹ Adrien Guillot,² Marc Winkler,² Swetha Pendem,¹ Sangeetha Mahadevan,¹ Frank Tacke,² Lauri Diehl,¹ Ruchi Gupta¹ — ¹Gilead Sciences, Inc., Foster City, California, USA; ²Charité – Universitätsmedizin Berlin, Germany

Introduction

- Inflammation is a key driver for the progression of chronic liver diseases, which are characterized by parenchymal cell injury, immune-cell infiltration, and fibrogenesis¹
- No pharmacologic treatment options exist for nonalcoholic steatohepatitis (NASH) and primary sclerosing cholangitis (PSC) at present
- Understanding the contributors and overlap in the immune landscape in NASH and PSC can provide a basis to develop new therapies

Objective

To use novel technologies to dissect the immune response complexity in NASH and PSC to provide the basis for therapeutically modulating immune responses

Methods

- Transcriptomes of liver biopsies from 147 NASH and 75 PSC patients were analyzed using 200 inflammation signature genes established by the Broad Institute (Cambridge, Massachusetts, USA)²
- To understand the alteration in immune profiling in nonlobular vs lobular areas in liver biopsies from healthy control subjects (n=11), and patients with PSC (n=11), and F0–F1 (n=21) and F4 NASH (n=12), a 12-plex UltiMapper[®] immunofluorescence assay (Ultivue, Inc., Cambridge, Massachusetts, USA)³ was performed
- The spatial distribution of immune-cell subsets was characterized by 2 novel technologies: 12-plex UltiMapper technology and sequential multiplex immunostaining⁴
- For both technologies, unbiased analysis of whole-slide imaging from liver sections was performed

Results

Transcriptomic Analysis Revealed Similar Inflammation Signatures in NASH and PSC Liver Specimens as Disease Progressed

			1 00 (¥3 ISHUK 0)							
F1	F2	F 3	F 4	1	2	3	4	5	6	
		2.19x	3.56x			2.96x	2.84x	5.25x	8.37x	Т
		2.38x	4.76x			2.87x		4.02x	8.68x	IL
		2.29x	3.88x			3.20x		3.85x	7.18x	G
		2.20x	3.64x						9.01x	к
			2.79x					4.26x	7.71x	В
			3.25x			2.94x		4.03x	4.59x	Н
		1.85x	2.99x			2.20x	1.96x	3.14x	5.00x	N
		2.03x	2.95x			2.00x	1.79x	2.49x	4.83x	S
		1.73x	2.62x			2.22x	2.51x		5.36x	Р
		2.34x	3.13x			2.32x	2.30x		4.88x	С
		1.63x	2.31x			2.93x			5.99x	N
		3.01x	3.86x						5.00x	Н
			2.56x						5.07x	Cl
		2.20x	2.11x						3.89x	C
			1.60x			2.51x		3.15x	3.73x	М
			1.65x			2.56x	2.27x		3.26x	R
										SE
									6.68x	IL
		2.21x	3.35x			3.48x	3.57x	3.63x	8.94x	LC
		2.19x	2.85x			3.82x		4.08x	7.29x	Pl
		1.95x	2.89x			3.18x	4.42x	3.77x	7.60x	М
		2.46x	3.46x			4.45x	4.80x	6.05x	9.04x	LF
		2.79x	3.75x						8.55x	LA
		2.46x	2.63x						4.80x	C)
		2.68x	3.87x			4.68x	6.90x	8.89x	15.01x	SL
		4.64x	4.95x			5.48x	5.06x		7.20x	С
		3.68x	9.08x			3.02x	3.32x	5.15x	15.28x	F3
		3.09x	6.46x					5.49x	10.47x	IT
		3.50x	4.95x			2.53x		6.45x	7.21x	С
		6.33x	9.92x					13.94x	19.49x	OL
		19.64x	32.04x					42.11x	49.41x	С
		9.60x	25.21x			14.10x		29.71x	55.09x	C)
		8.89x	18.31x				12.37x		41.20x	LI
		3.84x	7.56x			11.13x	11.37x	18.22x	43.70x	SI
		9.80x	28.35x			19.66x	24.95x	57.17x	102.31x	G
			10.70x					85.65x	178.26x	C

 11
 21
 12

 PSC
 F0-F1
 F4

- RNA sequencing revealed that 64% and 47% of inflammation signature genes were upregulated in livers from patients with NASH cirrhosis and PSC Ishak 6, respectively, compared with healthy livers
- The highest upregulated genes in both diseases were C-C motif chemokine ligand-20 (CCL20), C-X-C motif chemokine ligand-6/8 (CXCL6/8), LIF interleukin-6 family cytokine (LIF), and signaling lymphocytic activation molecule family member-1 (SLAMF1)
- Upregulation in inflammation signature genes was observed as disease progressed and it correlated with fibrosis markers (α -smooth muscle actin: r=0.64, Enhanced Liver Fibrosis test [Siemens Healthcare GmbH, Erlangen, Germany]: r=0.60)

Infiltration of CD8 and CD4 T Cells Increased in Fibrotic Scars of NASH and PSC

- In nonlobular areas of NASH livers, a 4.5-fold (p=0.001) increase in CD8+ T cells and 6.2-fold (p < 0.001) increase in CD4+ T cells were observed compared with healthy livers; PSC liver samples also showed an 11.9-fold (p=0.03) elevation in CD8+ T-cell infiltration and 18.5-fold (p < 0.001) increase in CD4+ T cells compared with healthy livers
- Regarding CD4 T-cell subsets, increased numbers of FOXP3+ regulatory T cells were found in F4 NASH (mean 0.13% [95% confidence interval -0.004, 0.26] vs F0/F1 (0.02% [0.008, 0.04]) and in PSC (0.64% [-0.007, 1.3] vs normal (0.01% [0.003, 0.02]) liver samples

Conclusions

- CD4, CD8, and regulatory T cells, and monocyte-derived macrophages

References: 1. Schuster S, et al. Nat Rev Gastroenterol Hepatol 2018;15:349-64; 2. Liberzon A, et al. Cell Syst 2015;1:417-25; 3. Manesse M, et al. Cancers (Basel) 2020;2055:585-92; 4. Guillot A, et al. Cancers (Basel) 2020;12:2449. Acknowledgments: We extend our thanks to the subjects and their families. This study was funded by Gilead Sciences, Inc. Adrien Guillot is a recipient of the Humboldt Research Fellowship for postdoctoral researchers

- compared with healthy livers

- PSC, respectively, vs healthy livers

Immune-Cell Infiltration in NASH and PSC

• NASH and PSC share common inflammation signature genes that correlate with stage of the disease and fibrosis markers • The novel multiplex technologies allowed a broader understanding of the liver immune microenvironment, showing similar trends toward increases in

Increases in the infiltration of CD163-positive monocytes and plasma levels of soluble CD163 were also observed during progression of NASH and PSC • Together, these approaches provide further disease understanding and enable therapeutic discoveries to treat liver diseases

Gilead Sciences, Inc. 333 Lakeside Drive

CD163+ Cells Decreased in Lobular Areas, But Increased in

In the innate immune component, high infiltration of monocyte-derived macrophages (IBA1+ cells) was observed in nonlobular areas of F4 NASH and PSC patients

 CD163+ macrophages were 9-fold higher in livers with NASH fibrosis vs F0/F1 PSC livers showed an 11-fold increase in CD163+ macrophages

 Decreases in CD163+ macrophages were observed in lobular areas of NASH (12%) F4 NASH vs 3% healthy) and PSC (11% vs 5% healthy) livers

Soluble CD163 was 1.4-fold (p < 0.02) and 2.5-fold (p < 0.001) higher in NASH and</p>

